Implicit-Explicit Linear Multistep Methods for Stiff Kinetic Equations
نویسندگان
چکیده
منابع مشابه
Stability of implicit - explicit linear multistep methods
In many applications, large systems of ordinary di erential equations (ODEs) have to be solved numerically that have both sti and nonsti parts. A popular approach in such cases is to integrate the sti parts implicitly and the nonsti parts explicitly. In this paper we study a class of implicit-explicit (IMEX) linear multistep methods intended for such applications. The paper focuses on the linea...
متن کاملImplicit-explicit multistep methods for quasilinear parabolic equations
Efficient combinations of implicit and explicit multistep methods for nonlinear parabolic equations were recently studied in [1]. In this note we present a refined analysis to allow more general nonlinearities. The abstract theory is applied to a quasilinear parabolic equation. Dedicated to Professor Vidar Thomée on the occasion of his 65 birthday, August 20, 1998
متن کاملImplicit-explicit multistep methods for nonlinear parabolic equations
Implicit–explicit multistep methods for nonlinear parabolic equations were recently analyzed in [2, 3, 1]. In these papers the linear operator of the equation is assumed time-independent, self-adjoint and positive definite; then, the linear part is discretized implicitly and the remaining part explicitly. Here we slightly relax the hypotheses on the linear operator by allowing part of it to be ...
متن کاملVariable Step-size Implicit-explicit Linear Multistep Methods for Time-dependent Partial Differential Equations
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily impleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2017
ISSN: 0036-1429,1095-7170
DOI: 10.1137/16m1063824